
0055-SIP-2007-PIEEE

1

Abstract—This paper describes several challenges facing
programmers of future edge computing systems, the complex and
diverse multi- and many-core devices that will soon exemplify
commodity mainstream systems. To call attention to
programming challenges ahead, this paper focuses on the most
complex of such architectures: integrated, power-conserving
systems, inherently parallel and heterogeneous, with distributed
address spaces. When programming such complex systems,
several new concerns arise, such as computation partitioning
across functional units, data movement and synchronization,
managing a diversity of programming models for different
devices, and reusing existing legacy and library software. We
observe that many of these challenges are also faced in
programming applications for large-scale, heterogeneous
distributed computing environments, and solutions used in
practice as well as future research directions in distributed
computing can be adapted to edge computing environments.
Further, optimization decisions are inherently complex due to
large search spaces of possible solutions and the difficulty of
predicting performance on increasingly complex architectures.
Cognitive techniques are well-suited for managing systems of
such complexity. We discuss how recent trends of using cognitive
techniques for code mapping and optimization support this point.
We describe how cognitive techniques could provide a
fundamentally new programming paradigm for complex
heterogeneous systems, where programmers design self-
configuring applications and the system automates optimization
decisions and manages the allocation of heterogeneous resources
to codes.

Index Terms—Optimizing compilers, Learning systems,
Computer architectures, Distributed computing, Multi-core
architectures, Self-configuring applications

I. INTRODUCTION
eterogeneous systems are comprised of a variety of
special-purpose computing engines, complex memory

Manuscript received March 17, 2007. This work was supported in part by

the Department of Energy Scientific Discovery through Advanced
Computation DE-FC02-06ER25765, National Science Foundation project
CSR-0615412, and by a gift from Intel Corporation.

All authors are with the University of Southern California / Information
Sciences Institute; 4676 Admiralty Way; Marina del Rey, CA 90292. Phone:
310-822-1511; fax: 310-823-6714; email: {mhall,gil,rflucas}@isi.edu.

hierarchies, and interconnects that link all of these resources
together. Technology advances such as exponentially
increasing chip densities have pushed hardware designers
towards devices with multiple processing cores to better
manage design costs and energy consumption. Heterogeneous
devices can further exploit specialized functional units to
increase performance and manage power for different phases
of a computation. Currently, there are available a proliferation
of systems with heterogeneous processing capability at various
scales – from systems-on-a-chip FPGAs such as the Xilinx
Virtex 4, standard PCs with graphics processors,
heterogeneous chip architectures such as the IBM Cell,
domain accelerators such as Clearspeed, high-end systems that
incorporate co-processors such as the Cray XD1, and
distributed systems comprised of clusters of diverse resources.

Heterogeneous platforms can accelerate many applications
that mix compute-intensive and control-intensive phases of
computation, which are best targeted to different processing
elements. These applications include large-scale scientific
computations, complex simulations of physical phenomena,
and visualizations. One such example is entity-level
simulations, wherein people and other entities are simulated
by independent agents, are widely used for training and
simulation. The US Joint Forces Command’s (JFCOM) Urban
Resolve experiment is an entity-level simulation that models
military operations in urban terrain [Ceranowicz 05]. A
million or more civilian entities are simulated to represent the
complexity of a modern urban environment [Lucas 04]. These
entities must determine if they are in the line-of-sight (LOS)
of other entities, in particular models of sensor platforms. As
the scale and complexity of military training and
experimentation increases, the time to determine whether or
not entities can see each other can quickly become the
computational bottleneck. At their peak, LOS calculations can
consume over half of the CPU time in urban scenarios such as
JFCOM’s Urban Resolve. To ensure that experiments
progress in real time, Urban Resolve software engineers are
forced to roughly halve the number of entities they could
otherwise simulate. Recent results demonstrate that LOS
computations are well suited for execution on graphics co-
processing units (GPUs), providing an order of magnitude
improvement in LOS performance [Salomon 04]. As a related
example, traffic simulation of entire metropolitan areas has

Self-Configuring Applications for
Heterogeneous Systems:

Automating Programming Decisions Using
Cognitive Techniques

Mary Hall, Yolanda Gil, and Robert Lucas, Senior Member, IEEE

H

0055-SIP-2007-PIEEE

2

been demonstrated using a mix of FPGA and conventional
hardware [Tripp et al. 05].

While heterogeneous systems are promising from a
performance and power perspective, additional programming
challenges arise, including: (1) partitioning of the application
across functional units; (2) managing data movement between
functional units; (3) differences in programming models and
tools across functional units; and, (4) managing reuse of code
developed by others. Further, edge computing applications
must be highly optimized for performance and power
consumption. Just to put these challenges in perspective, (1),
(2) and (4) are also challenges in porting across different
homogeneous platforms. In the absence of tool support for
this set of challenges, programmers of heterogeneous
platforms must explicitly manage these details, which can
dominate all other aspects of application programming for
heterogeneous systems. The net result is that developing and
debugging programs on such systems can be quite tedious, and
is only approachable by highly-skilled individuals. A
tremendous need exists for new approaches that can both
increase the productivity of these highly-skilled developers
and make these powerful systems more accessible to a
broader group of users.

Programmers of distributed applications face similar
challenges. Here, the focus is on collections of codes that are
submitted for execution on distributed, heterogeneous
resources, where the available resources may not be known
prior to execution. These applications are broken down into
coarse-grain components, and each is assigned an aggregate
resource (possibly a cluster) for execution. The flow of data
across components, usually external files, must be managed
appropriately, as well as any dependencies. Programmers of
these distributed applications face a very diverse set of
resources and requirements. They also must manage software
components developed by others, much like programmers of
heterogeneous architectures incorporate software libraries
developed by others.

In this paper, we discuss programming challenges that, in
our view, are common to heterogeneous platforms and to
distributed heterogeneous systems. We introduce the
approaches taken so far in these two communities, and argue
that many of the challenges and approaches are generally
applicable to both kinds of heterogeneous computing. This
strategy is the result of our experiences in: (1) developing
search-based compiler optimization for conventional memory
hierarchies, FPGAs, and SIMD units in multimedia extensions
and processing-in-memory devices; (2) cognitive techniques
for managing large-scale distributed applications; and, (3)
large-scale applications that will target edge computing
systems.

Our key observation is that a systematic and principled
approach to developing and executing heterogeneous
applications, making use of cognitive techniques, can greatly
increase programmer productivity and application
performance for edge computing platforms. We introduce
the concept of self-configuring applications, a new paradigm
for heterogeneous programming that combines model-based

software development and empirically-driven optimization.
The role of a programmer with such an approach is to design
models for software components that declare explicitly
parameters and other aspects that can be optimized and
managed by the underlying system. The system, in turn, takes
a proactive role in configuring the application by searching
through the space of possible configurations guided by
information learned from empirical data derived from prior
executions.

The remainder of the paper is organized as follows. Section
II discusses the programming challenges of heterogeneous
platforms in more detail, drawing similarities to distributed
computing environments. Section III then proposes self-
configuring applications as a programming paradigm for
heterogeneous platforms that incorporates cognitive
techniques to represent and manage complex mapping
decisions. Section IV concludes the paper.

II. PROGRAMMING CHALLENGES
This section discusses the previously mentioned

programming challenges, first as they apply to heterogeneous
edge computing platforms and second to distributed
heterogeneous systems, with a summary in Table I. In the next
section, we will discuss strategies for how to address these
challenges. For this section, we assume an abstract
architecture which includes a set of interconnected functional
units of different capabilities, each with their own local
memories, and with a global store. One of the devices may be
a host processor which maintains control of the other devices.
Examples of different devices include commodity general-
purpose processors, SIMD functional units such as multimedia

TABLE I
PROGRAMMING EDGE COMPUTING VS. DISTRIBUTED COMPUTING

 Edge Computing Distributed Computing

Programming
Model Diversity

Parallel languages:
pthreads, MPI, OpenMP,
transactions;
GPU languages: Ng,
Cuda;
FPGA: VHDL or
Verilog; Stream
processing: StreaMIT,
Napa-C

Sequential, OpenMP,
MPI, Global Address
Space Languages,
mixed languages (C,
Fortran, C++, Java)

Libraries and
Components

Sources: Device-specific
libraries; domain-specific
libraries; application
libraries.
Interface.

Sources: Target-specific
code; domain-specific
libraries; large-scale
scientific simulation.
Interface.

Computation
Partitioning

Stream processing: DSP,
GPU, Multimedia
extension;
Control-intensive:
General-purpose;
Configurable: FPGA

Coarse-grain MPI code:
large number of nodes;
Data sharing: SMP;
Sequential: single node

Data Movement
and
Synchronization

Communication and
copying: To/from shared
memory; To/from
buffers; Between
functional units. Impact
on schedule.

Data Products in Files:
To/from different nodes
or clusters; Data in
catalogs; Intermediate
data;
Impact on schedule.

0055-SIP-2007-PIEEE

3

extensions, DSPs, FPGAs, GPUs, and domain accelerators
such as Clearspeed.

A. Diversity of Programming Models
Perhaps the biggest challenge in targeting heterogeneous

platforms is that each device may support a completely
different programming model. An extreme example is a
system that includes general-purpose processors, which are
programmed with standard programming languages such as C
and Fortran, coupled with FPGAs, which are traditionally
programmed with hardware description languages such as
VHDL and Verilog. While some C dialects exist to program
FPGAs, for the most part these impose requirements on the C
constructs that can be used and require hardware descriptions
that are quite different from standard software programs.
GPUs also have their own programming languages, such as,
for example, Ng (for graphics programs) and Cuda (for
application programs) by Nvidia. GPU-specific languages are
needed because GPUs have a unique hierarchical structure of
processing units and memories, and many constraints on the
type and number of instructions that certain functional units
can execute. Stream processing and data-parallel languages,
which allow programmers to express repeated operations on
data streams, can be used to target digital signal processing
(DSP), multimedia extensions and other similar devices. In
each case, the programming model facilitates expressing
computation well-suited to the device while managing the
constraints imposed by the architecture.

In distributed computing applications, codes are often
written in different languages, and for different target
architectures and classes of target architectures. Sequential
portions of the code may be written in Java for a uniprocessor,
while other portions are large-scale codes written in MPI. Still
others might be developed for shared-memory multiprocessors
and written in OpenMP, and hybrid MPI and OpenMP
programs and use of modern global address-space languages
such as UPC are becoming more common. Beyond the
diversity of programming languages, distributed applications
incorporate application binaries that have been already
compiled for specific target architectures. Programmers need
to select appropriate executables once the resources are
selected. Further, beyond selecting resources based on the
application properties, different types of resources are
managed by different systems. Jobs may be submitted
through different queues that have different policies regarding
job length and priorities. Programmers also need to understand
how much computation to fit within a job, by estimating the
time that each of their many computations will take to execute
and grouping them into jobs of a reasonable size. Creating
adequate granularity for computations based on resource
policies is an art, often learned through trial and error.

While it might seem beneficial if all of these resources
could be programmed using the same universal programming
model, this is an unrealistic goal, as it would: (1) compromise
the strengths of the existing programming models for their
own platforms; (2) make it impossible to incorporate legacy
code into edge computing applications; and, (3) fail to be

adopted by the community, as there will never be consensus
on what is the right universal programming model. The
appropriate strategy for managing a diversity of programming
models must address these three considerations, as discussed
in Section III.

B. Legacy Code and Highly-Tuned Libraries
Incorporating legacy code into edge computing platforms

includes not only existing application code, but also highly-
tuned libraries that have been designed for a particular device
type. Vendors of commodity devices develop highly-tuned
libraries to encourage adoption of their hardware. Prior to the
availability of compilers and other programming tools for a
new platform, such libraries provide a shortcut to obtaining
high performance for application domains with common core
computations that can be developed into libraries. Similarly,
researchers develop highly-tuned domain-specific libraries
designed to be portable across platforms, with notable
examples including BLAS and ATLAS for linear algebra
[Whaley 05] and FFTW [Frigo 05] and SPIRAL [Puschel 05]
for signal processing.

In distributed computing, applications are often formed by
composing codes developed independently. Many alternative
encapsulations may be possible for already existing codes.
Further, it is possible that various different implementations of
the same component are available, each optimized for a
specific architecture. Programmers then need to select the
appropriate implementation for the resources assigned to the
computation. This becomes a complex decision when many
resources and many alternative implementations may be
available and thus the space of choices becomes
unmanageable and hard to optimize by hand.

C. Partitioning Across Functional Units
Edge computing systems include a diversity of functional

units, each with unique capabilities for which they are best
suited. If an application kernel is data-intensive, performing
repeated operations on a stream of data, a DSP or GPU may be
a good target functional unit. If it is instead control-intensive,
a general-purpose processor or a special-purpose control
processor would be a better choice. If specialized arithmetic
modes are needed, these tend to be supported best by DSP or
multimedia extension architectures. FPGAs are effective for
computations that can be highly specialized to exploit
parallelism, fine-grain data movement such as bit
manipulation, and custom data types such as arithmetic on
small objects. The decision as to which functional unit is best
for a computation is called computation partitioning. This
decision must consider not only which device can perform the
computation most efficiently, but also whether the benefit of
performing a computation on a particular device outweighs the
cost of migrating the computation and associated data to/from
the device, as discussed in Section D.

Similarly, complex distributed applications are often broken
down into components that are designed for specific
architectures depending on their characteristics. For example,
a component that realizes a highly parallelizable code may be

0055-SIP-2007-PIEEE

4

implemented as an MPI code optimized for a 128-node
cluster, while another component may contain simpler
computations and be implemented as a Java code that will
work on any 64-bit Opteron. Parallel codes that have a lot of
data sharing, and would perform poorly on clusters, may be
better-suited for shared-memory multiprocessors. There are
natural boundaries created by the requirements of the different
aspects of the computation, and therefore the applications end
up being modularized accordingly. Programmers, however,
need to manage partitioning as well, by grouping together
components that can be bundled for execution in a single
resource so as to reduce queuing time.

D. Managing Data Movement and Synchronization
For an architecture that includes a set of independent,

interconnected functional units, a key challenge in developing
both correct and high-performing applications is managing the
movement of data and synchronization among functional
units. Data must be staged not only between functional units,
but between global memories and local memories or buffers.
This requires careful scheduling of data movement relative to
computations, to ensure the correct data is available when it is
needed.

In distributed computing, data must be staged in and out of
catalogs where data collections are stored and managed. The
results of intermediate computations that will be used in
subsequent computations at the same location should remain
available if possible. Programmers must be aware of the
location of intermediate data products in making decisions
about later computations, and must also be aware of memory
requirements and availability. If memory availability at a
location is insufficient, failures must be analyzed and repaired
either through higher memory requests or by assigning the
computation to alternate locations.

Related to computation partitioning, programmers of both
types of systems also must consider cost of data movements
among resources where the computations occur. When data
movements take significant time compared to the time taken
by the computations, selecting suboptimal resources for the
computations themselves may be preferable if the data
movements are reduced significantly.

E. Summary
This section described a large set of decisions that must be

made by programmers of heterogeneous systems, representing
a vast tradeoff space of possible solutions. Not only do these
decisions affect performance of the result, but they also must
be carefully managed to guarantee a correct program. The
difference in complexity, in terms of development time,
between a sequential application written for a homogeneous
system and a parallel or distributed application for a
heterogeneous platform can be several orders of magnitude,
with the resulting code size also growing by more than an
order of magnitude. Errors abound, as with any manually
managed process, and users need to be able to understand
error conditions and repair failures. Extending the application
has cascading effects that have to be managed manually,

making it impractical unless the additions were anticipated in
advance. As we move to increasingly heterogeneous
platforms of the future, having appropriate architecture-
independent programming paradigms becomes of paramount
importance.

III. SELF-CONFIGURING APPLICATIONS: A NEW
PROGRAMMING PARADIGM FOR HETEROGENEOUS

COMPUTING
In the previous section, we discussed a set of programming

challenges currently faced by programmers of edge computing
systems. In this section, we propose an approach, based on
partial solutions from the literature, which would provide
assistance or automate many of these decisions currently left
to the programmer. Some of this prior art comes from existing
distributed computing systems, while the rest reflects new
strategies for code optimization. We introduce the concept of
self-configuring applications, whereby the programmer
expresses an application as a high-level workflow comprised
of tunable software components that are abstractions of
implemented codes. The high-level workflow is instantiated
and optimized for the edge computing platform, in the
presence of training data that is representative of real
execution environments. The optimization process relies on
empirical search to execute and evaluate portions of a
collection of equivalent alternative implementations of the
workflow for the most suitable implementation. Machine
learning, a rich knowledge representation, and an experience
base aid in pruning and navigating the search space. Thus,
through a systematic and principled strategy for formulating
application optimization for heterogeneous platforms, the
programmer’s partial specification of a high-level workflow is
realized as an edge computing application, as will be
discussed in this section.

A. Self-Tuning and Selectable Components
Workflows represent complex applications as components and
their associated data flow. Before describing how workflows
are expressed, we first focus on properties of components that
could be used to instantiate and optimize workflows for edge
computing. A component is a code segment packaged with
the interfaces needed for someone other than the component
developer to correctly invoke and use the component in an
application. Component technology has been commonly used
for over a decade as a strategy for facilitating code reuse and
interoperability. As one notable example, the Common Object
Request Broker Architecture (CORBA) facilitates
interoperability between two programs, potentially written in
different languages and executing on different vendor’s
platforms. Despite the existence of CORBA and other
component standards, where high performance or efficiency is
required, such as in very high-end systems and embedded
systems with hard timing and resource constraints, component
technology is usually dismissed by application developers,
who perceive component packaging as introducing too much
overhead to be practical. Due to the growing complexity of
application codes in these high performance or high efficiency

0055-SIP-2007-PIEEE

5

regimes, recent efforts have introduced component technology
that has lower overheads and/or richer interfaces, e.g.,
Common Component Architecture (CCA) for high-end
computing [Allan et al. 06], and DoD’s Software
Communications Architecture (SCA) for embedded software
radio applications.

Why components are needed?
The use of components in edge computing addresses several

of the challenges in Section II. From the workflow
perspective, it provides a sufficiently coarse-grain boundary
for reasoning about application composition and optimization.
It provides a unified mechanism for applications that mix
legacy code, highly tuned libraries, and new self-configuring
components either written by an application developer or
generated automatically by a compiler. At the component
level, the same programming model is used, regardless of
functional unit and data movement protocol. Details of
invoking a particular functional unit are managed by the
system, replacing abstract data movement specifications with
device-specific libraries. In the extreme example of
programming model diversity, combining general-purpose
with FPGA devices, computations to be performed on the
FPGA appear no different than other software components.
This overall strategy is consistent with Sun’s Fortress
language for High Productivity Computing, which is designed
around the concept of building applications through
composing libraries.

Requirements for components of self-configuring applications
A component for self-configuring applications must support

automatic code selection and achieve high performance or
high efficiency, and therefore goes beyond the traditional
concept of facilitating software reuse and interoperability.
The requirements are as follows:

• Interchangeable code variants: the interface describes
features of the implementation and their relation to
input data characteristics. This information can be used
by the system to select the appropriate component for a

given functional unit.
• Self-tuning: the interface exposes optimization

parameters used to adjust performance based on data
features.

• Lightweight: the executable interface must have low
execution time and storage overheads.

The remainder of this subsection focuses on details of these
properties and how they are used in self-configuring
applications.

Components as part of workflows.
To manage the workflow at the application level and at the
resource level, the component models used by workflow
systems include three distinct aspects: a functional model, an
invocation model and a performance model. The functional
model includes the type and order of input data, arguments
and parameter information, and output data. The functional
model is used to communicate with the programmer at the
application level. It also allows the workflow system to reason
about the interactions among components in the workflow,
and support programmers in workflow creation and validation.
The invocation model provides the information needed by the
system to map components for execution: a calling sequence,
a pointer to the source or binary code, the device for which it
has been developed, and any other requirements. In
distributed computing, the invocation model is used by the
system to generate mappings to execution sites that comply
with the component requirements. The invocation model is
also used to manage and optimize data movements. The
performance model will capture all of the aspects of the
component used in optimization, including expected execution
time of the code on a particular device based on training data,
and parameters of optimization that can be adjusted off-line or
dynamically, such as loop unroll factors, a mapping between
data set features and values of these parameters. These
performance models could be improved over time through
empirical data of actual performance of the component.

Given this set of models, workflows may include abstract
descriptions of components. That is, instead of specifying a
particular component implementation, the workflow can refer

Fig. 1. A comparison of traditional and proposed components.

0055-SIP-2007-PIEEE

6

to a category or type of component. For example, a workflow
could simply indicate the functional characteristics required to
process data at that particular point in the application. These
functional characteristics may then be realized by multiple
components. This gives the system tremendous flexibility in
terms of choosing which instantiation of the component to
select based on the input data and the resources available for a
given execution.

Figure 1 shows how components appear in the system to
support this process. In a traditional view, component
descriptions include code (source or binary) as well as an
interface that describes the functional behavior of the
component (what functions are provided externally and
required from the external environment), and a description of
the data that will be provided as input to the component.

These notions are extended in the proposed framework. In
terms of interface, for the functional model, it must match an
abstract interface that describes a set of alternative
implementations to be selected during workflow instantiation.
To support the execution model, any device dependences are
described – for binaries targeting a specific device, the device
itself is reported, while for source code, the programming
model and any compiler dependences are described, in effect
an assertion of what tools are likely to support the component.
In addition, rather than including code, partial code is
provided (either parameterized source or tunable binary), with
a code generation mechanism to finalize code generation in
the context of the provided data. Included with the data
description is a mapping of data features to code optimization
strategy, to guide code generation. Finally, to support the

Fig. 2. Creating a self-configuring application as a workflow. The top portion describes the steps, and the bottom portion shows an example workflow.

0055-SIP-2007-PIEEE

7

performance model, expected or measured performance is
reported for specific devices and specific data features. Many
of these concepts have been demonstrated in the Standard
Template Adaptive Parallel Library (STAPL) framework,
which provides tuning parameters, data features and
instantiated learners as part of the library components to
enable dynamic algorithm selection [Yu et al. 2004][Thomas
et al 2005].

Can we make components lightweight enough?
The minimal component interface must verify the correctness
of the invocation model, and manage the movement of data
between devices. More complexity may be added if
optimization decisions including code selection and parameter
identification are performed dynamically. While this
additional abstraction will indeed add overhead, components
ought to be somewhat coarse-grained – as we switch to a new
functional unit, even a hand-tuned application also involves
data copying. Thus, the overhead should be small relative to
the key computations. The system can optimize workflows by
merging small components for the same device, or exploit
data-parallelism by splitting coarse-grained components,
similar to the notions of combining and splitting streams in
StreaMIT [Gordon et al. 02]. Recent results on component
technology show a performance improvement in the use of
components due to the benefits of breaking code into
manageable chunks that are more effectively optimized by a
compiler, as long as the per-processor computaition
granularity of the component is sufficiently large [Yoon et al
07]. The SmartApps system employs customization of run-
time services as part of the application code to reduce
component overhead [Rauchwerger et al. 2000].

B. Composing and Optimizing Workflows
Representing workflows at multiple levels of abstraction is

critical to facilitate code reuse and automate many
implementation aspects that are not expressed directly in the
application. We consider three stages of creation of
workflows, each stage corresponding to a different type of
information being added to the workflow:
1. Defining workflow templates that are data- and execution-

independent specifications of computations. Workflow
templates identify the types of components to be invoked
and the data flow among them. The nature of the
components may constrain the input data that the
workflow is designed to process, but the specific data set
to be used is not described in the template. This level of
specification supports analysis of potential instantiations
of the workflow, but there is not enough information to
perform optimization. A workflow template should be
shared and reused when performing the same type of
computations.

2. Creating workflow instances that are execution-
independent. Workflow instances specify the input data
needed for an application. A workflow instance can be
created by selecting a workflow template that describes
the desired application and binding its data descriptions to
specific data to be used (or representative data). The

concrete optimization criteria are also specified here, such
as whether to focus on end-to-end performance,
throughput, power, or a combination, and if needed,
specific requirements for each of these. While a
workflow instance logically identifies the full application,
it does not include execution details such as what
hardware resources should be used or where data should
be placed. That is, the same workflow instance can be
mapped into different executable workflows that generate
exactly the same results but use different resources
available in alternative execution environments. A
workflow instance can be optimized off line to derive a
collection of possible components that can incorporated
into the application, parameterized by anticipated features
of the execution environment.

3. Creating executable workflows. Executable workflows are
created by taking workflow instances and assigning actual
resources that exist in the execution environment and
reassigning them dynamically as the execution unfolds.
Executable workflows fully specify the resources
available in the execution environment (e.g., hardware
and memory resources) that should be used for execution.
The system can also automatically insert requisite data
movement and data staging steps. This mapping process
ideally is incremental and dynamic. Only the initial
workflow steps might be assigned to resources, while
later steps can wait until the execution of the initial steps
is finalized, responding to application behavior as it
unfolds. Any decisions made during this mapping must
be on line and therefore instantaneous. The complex
tradeoffs must be evaluated for workflow instances and
then used here.

The evolution of a workflow through these three stages is
summarized in the upper portion of Figure 2 and illustrated in
the lower portion with an example. Ovals indicate
computations, and rectangles indicate data. The workflow
template has a portion that will process data in parallel
(highlighted by the dark grey rectangle). The workflow
instance includes specific computations for each slice of the
specific dataset to be processed. Finally, the executable
workflow (showing here only computations and not data)
includes all details required to execute the computations in
different resources as well as data movement steps. More
details of this process are described in [Gil 06b; Kim et al 07;
Gil et al 07; Deelman et al 05].

In summary, self-configuring applications can be managed
automatically when the system can access to: (1) expressive
models of workflow components, (2) workflow
representations at different levels of abstraction, and (3)
alternatives for completing user-provided partial workflow
descriptions. These enable increased automation of workflow
creation and execution management tasks to relieve the
programmer from the complexities of the heterogeneous
execution environment.

C. Compiler Technologies and Generating Components
The preceding discussions of components and workflows

0055-SIP-2007-PIEEE

8

did not address how the various facets of the components,
beyond application code, would be derived. System-level and
device-specific compilers must play a critical role in
assembling this information, in conjunction with the execution
environment which captures execution history.

How to generate self-configuring components.
Compiler optimization typically performs a static analysis

of application code and generates a single binary of the code.
Due to the complexity of today’s architectures, such a static,
purely model-based approach generates code that falls far
short of hand-tuned levels of performance. Recent work has
dealt with the complexity of modern architectures through
empirical techniques, where optimization decisions are guided
by executing code variants directly to measure and compare
performance. This research began by developing domain-
specific libraries such as ATLAS for linear algebra [Whaley et
al. 05], FFTW [Frigo et al. 05] and SPIRAL [Puschel et al. 05]
for signal processing, OSKI for sparse linear algebra [Vuduc
et al. 2005] and sorting libraries [Li et al. 2004][Li et al. 2005]
as notable examples.

For all of these domain-specific libraries, manual
optimization strategies have been developed over many years,
and as a consequence, much domain knowledge exists
regarding how to yield high performance given different
architectural features. This domain knowledge is incorporated
into the optimization strategies. Empirical techniques simply
select among alternative optimization strategies and identify
values of optimization parameters.

While such libraries are without question very useful to
obtaining high performance on edge computing platforms, an
application developer cannot always count on the availability
of such libraries to implement all the performance-critical
portions of their application. Therefore, compiler technology
that can incorporate empirical techniques to tune application
code, if able to achieve close to hand-tuned levels of
performance, would be highly desirable to dramatically
improve programmer productivity.

This goal has inspired several compiler efforts that employ
empirical optimization to evaluate alternative compiler
optimization strategies, leading to much higher performance
than the standard compiler approach that relies on static
models. Examples of these include work on iterative
compilation [Knijnenberg et al. 04], and recent work using
polyhedral transformation frameworks [Cohen et al. 07].

Models have been shown to achieve results close to hand-
tuned performance [Yotov et al. 05b], and sophisticated
approaches using training and mutual information
maximization can quickly generate fairly accurate models
[Cavazos et al., 2006], but due to the growing complexity of
predicting interactions of different architectural features, there
is nevertheless a performance gap between optimizations
based purely on models and those using empirical techniques.

A hybrid approach called model-guided empirical
optimization combines the complementary strengths of
compiler models and heuristics with empirical techniques
[Chen et al 05a]. The models and heuristics limit the search to
a small number of candidate implementations, and the

empirical results provide the most accurate information to the
compiler to select among candidates and tune optimization
parameter values. Others have also shown success with
hybrid techniques combining models and empirical search
[Yotov et al. 05]. Using such an approach, compilers can
achieve results comparable to hand-tuned for dense-array
computations, as compared against hand-tuned libraries [Chen
et al 05b, Yotov et al. 05].

Compiler as experiential engine.
Using model-guided empirical optimization, the compiler

generates a set of experiments to perform a search among
possible implementations and optimization parameter values.
In the previous discussion, the experiments were the result of
compiler algorithms. However, the compiler can also serve as
an experiments engine for the application programmer,
assisting with evaluating application-level parameters. For
example, a programmer who wants to direct the compiler to
evaluate a set of alternative unroll factors for a loop nest can
be supported by an experiments engine that generates the
alternative code segments, executes them, and determines the
most appropriate for a class of data sets [Lee et al. 05].

Compilers that can be conveniently retargeted.
If as previously described we construct compilers that can

systematically search a space of alternative optimization
strategies, then by construction, the compiler design ought to
also be systematic. We envision a compiler that is constructed
in a principled way, so that optimizations are well-defined and
easily composed. Today’s compilers are monolithic and very
large -- in the hundreds of thousands or even millions of lines
of code. Optimization strategies are complex, sometimes
fragile, and often obscured and buried within the compiler
modules. Optimizations are typically composed by applying
each one independently, rather than combining them to
achieve the best effect.

We propose a compiler based on formal descriptions of
optimization behavior that can easily be composed. While not
possible for every optimization, several prior works describe
such an approach for loop transformations, commonly used for
array-based computations that arise in scientific computing,
and multimedia applications [Kelly 96, Cohen et al. 05, Chen
07]. A similar idea has been described for more standard
scalar optimizations [Soffa et al. 05]. Formalizing the
optimization framework and making optimizations
composable facilitates generating decision procedures for
optimization that are easily understood and can be constructed
or modified rapidly. This approach makes it possible to in
turn rapidly retarget such decision procedures from one device
architecture to another. In conjunction with searching,
discussed in the next section, such an approach creates a
powerful approach to compiler design that can assist in
targeting heterogeneous resources.

D. Searching for the Best Solution
We have discussed so far how many different types of

decisions could be made automatically to reduce the
complexity faced by a programmer in edge computing
platforms. Such decisions can take into account application-

0055-SIP-2007-PIEEE

9

level features, such as the density of a graph or the
connectivity within a partitioned data set, or target hardware
architectures, such as data storage locations, execution
resources, data movements, etc. Today, these decisions and
the associated search are hard-coded in the compilers or the
workflows. When a new hardware platform appears, costly
resources must be devoted to writing new compiler systems
that manage those decisions in a manner that is customized to
the particular features of the platform. Today, we already find
that it is expensive to experiment and explore the best
compiler design for a new platform. For the new edge
computing architectures of tomorrow, this mode of operation
will be absolutely impractical.

Cognitive techniques provide a systematic and principled
paradigm to manage these decisions and to automate as many
of them as possible. We envision two major benefits to come
from these techniques. First, we anticipate significant
productivity gains for programmers. Because programmers
today must manually experiment and learn how to optimize
codes for each type of application and for each type of target
architecture, programming is largely manual and has a costly
learning curve. The second anticipated benefit is major
performance improvements for applications. Because
programmers today are not necessarily knowledgeable of the
best optimization strategies for a given architecture, we
believe that automating many of these decisions will lead to
significant performance improvements across the spectrum of
applications.

A rich area for cognitive search techniques concerns global
decisions regarding the ordering of optimizations to apply to
the code. This issue is complicated by the fact that there may
be complex interactions among the decisions involved in the
various optimization steps that affect the performance of the
resulting code, and the fact that the right decision depends on
the target architecture [Kisuki et al 00]. The work by
[Almagor et al 04] exemplifies the benefits of representing and
analyzing the search space to improve performance. Three
distinct search algorithms generated orderings with 15% to
25% better performance than the human-designed fixed
sequence originally used in the compiler. This work provides
strong evidence that search techniques could effectively
improve the performance of optimizing compilers.

In distributed environments, specialized cognitive search
algorithms such as planning and scheduling have been used to
select workflow components and to select execution resources
[Gil et al 04; Blythe et al 03; Blythe et al 05]. Optimization
techniques that include workflow restructuring have been
explored in [Deelman et al 05]. Expressive representations of
workflows include rich metadata propagation rules and
semantic hierarchies of component and data types [Gil et al
07; Kim et al 04]. Defining layers of abstractions over the
decision space is an effective way to structure the search space
and explore different decisions with appropriate search
algorithms for each. [Gil et al 07] describe a layered approach
to workflow creation that started with a high-level description
of an earthquake simulation workflow. This workflow
instance was automatically assigned resources and data

movements to result in an executable workflow of 24,135 jobs
and that executed for a total of 1.9 CPU years.

Relevant cognitive search techniques include systematic
search, approximate search, and constraint-based search.
Systematic search algorithms are designed to consider
decisions in a principled manner, ensuring that all possible
partial combinations of decisions are represented in the search
space and visited at least once during the search [Nilsson 80].
Systematic algorithms can be made more efficient by
incorporating heuristics to prioritize and eliminate portions of
the search space [Pearl 85]. Properties of heuristics such as
admissibility can be defined that guarantee certain properties
of the search process. Approximate search algorithms explore
the space of possible solutions not by exploring partial
combinations of decisions and appending new ones but by
navigating complete solutions and their variants [Goldberg 02;
Kirkpatrick et al 83]. Examples include genetic algorithms
and simulated annealing. Finally, constraint-based search
algorithms explore the space of interrelated constraints among
variable values associated with the decisions to be made
[Dechter 03].

To exploit cognitive search techniques for edge computing,
several areas of research much be addressed. The first step
will be to articulate and represent declaratively the kinds of
decisions that can affect the quality of the programming
solution, and how these decisions are related to application-
level and hardware architecture features. Such an approach
for loop transformations for memory hierarchy is described in
[Chen et al. 05b]. By representing declaratively all these
decisions, the search for a solution and better yet the search
for an optimal (or quasi-optimal) solution can be conducted by
using a variety of well-known algorithms and optimization
techniques. In addition, declaratively representing these
decisions will enable a better understanding of their nature and
their interdependencies. This determines the complexity of
the search and more importantly it determines what the best
algorithm and search strategy is.

Search techniques for compiler optimization have the
additional requirement of on-line response. That is, faster
response is crucial and sub-optimal decisions in that time
frame are far better than slower but optimal response. This is
desirable for off-line optimization, but an essential
requirement when code is optimized at run time. There is a
clear tradeoff between search time and solution quality, where
more time allows the algorithms to search a larger portion of
the solution space and therefore have a better chance to find
optimal or closer to optimal solutions. Fortunately, the
tradeoff between search time and solution quality has been
present in Artificial Intelligence research since its inception, as
humans are notorious for managing this tradeoff and approach
complex problems as sub-optimal decision makers [Simon
69]. In addition, there is a wealth of research on a special type
of search algorithm called "real-time" or "anytime" search
algorithms [Korf 90; Zilberstein & Russell 95; Hansen &
Zhou 07]. These algorithms are designed to have several
important properties: (1) an initial and likely sub-optimal
solutions is found quickly; (2) at any time, a solution can be

0055-SIP-2007-PIEEE

10

returned by the algorithm; and, (3) the quality of the solution
returned improves as the algorithm is given more time to
search the solution space.

Search techniques for distributed workflow environments
have an additional and important requirement. The dynamic
availability of distributed resources, where network
connections may fail or resources may be temporarily
withdrawn, requires search techniques that can handle
uncertainty and replanning. In addition, optimization
techniques must take into account other workflows and
applications running on the same hardware. Many cognitive
techniques are applicable in this context, including uncertainty
reasoning, abstraction search, and metareasoning [Gil 06a].
Programming in edge computing environments may benefit
from addressing these issues as well.

In summary, programming for edge computing architectures
presents a complex optimization problem. We have advocated
for the automation of the process with cognitive techniques, so
that the best algorithms can be identified based on their
computational properties to address the vast search space and
highly interdependent optimization criteria.

E. Learning from Experience
Machine (automated) learning is another cognitive

technique that will be advantageous to support programming
for unforeseen heterogeneous computing architectures and
applications. While learning may not be a strict requirement
for architectures and applications where human expertise
exists or can be developed, it will be absolutely necessary to
learn to search and optimize the space of decisions when
completely new architectures and applications appear with the
envisioned complexity, heterogeneity, and uniqueness.

Learning techniques are used routinely to develop
intelligent agents that make decisions while learning not to
repeat the same mistakes and to improve their performance in
tasks they perform routinely. Learning ranges from simply
collecting performance metrics and deriving statistical
predictive models, to more complex learning where efficient
search heuristics are derived by reasoning about the properties
of a problem domain. Learning can also improve performance
by recognizing common failure conditions and designing
mechanisms to anticipate and avoid them. Effective learning
techniques relevant here include reinforcement learning from
reward feedback, learning Markov decision processes to
improve overall policies, and symbolic compilation of
behavior-triggering rules [Kaelbling et al 95; Dietterich 00;
Hengst 00; Anderson et al 04].

A rich area for cognitive learning techniques is
automatically learning local decisions concerning individual
optimizations. Typically, the problem is cast as parameter
selection for a given optimization, such as determining
whether a loop should be unrolled and the unroll factor.
Recent work demonstrates that machine learning techniques
could effectively be used to automate the construction of
compiler optimization heuristics [Stephenson et al 05]. The
compiler developer hand-selected code features believed to be
relevant to making decisions for loop unrolling heuristics.

Loops in a suite of benchmarks were annotated regarding the
value of each of these features and which unroll factor yields
the best performance. This represents a kind of machine
learning problem called classification: given a set of feature
values, which decision (unroll factor value) is most
appropriate. Two machine learning algorithms were trained,
Nearest Neighbor (NN) and Support Vector Machine (SVM).
Both algorithms were trained off-line based on the labeled
benchmark data, and the results were tested against new codes
and compared with the existing loop unrolling in the compiler,
achieving up to a 9% overall performance improvement.
Given that the features used by these classifiers can be
automatically extracted from code, and given that the
performance of the learned heuristics is as good or better than
manually developed heuristics, this work provides strong
evidence that machine learning techniques could effectively
automate an otherwise costly and non-portable compiler
development effort.

Another kind of decision is whether or not a given
optimization should be done at all given what other
optimizations are being planned. The work by [Cavazos and
Moss 04] exemplifies the benefits of this line of research, and
investigates machine learning techniques to decide whether to
schedule a block of instructions. The decision is also framed
as a classification problem for machine learning. A dozen
features were identified as relevant, and a number of blocks in
a benchmark suite were annotated regarding whether or not
scheduling improved the block. Using a well-known rule-
learning algorithm, they obtained over 90% of the
improvement of block scheduling with less than 25% of the
effort. In related work, [Moss et al 97] explored learning
techniques to decide which instruction to schedule next.
These results demonstrate the effectiveness of learning
techniques to select transformations in adaptive compilers.

In the context of resource selection in distributed workflow
systems, learning techniques have also been explored but in
more limited ways than they have in adaptive compilers
[Galstyan et al 05]. These techniques would be beneficial in
edge computing in selecting resources for blocks of code.

In summary, a fertile area of future research is the rich
representation of the decisions and the relevant features
involved in adaptive compilers for edge computing. An
important additional research area demands a more extensive
exploration of available cognitive learning techniques that are
best suited to each aspect of the optimization process.

IV. CONCLUSION
We have argued that distributed systems and compiler

systems research have investigated very relevant issues to the
future of programming for edge computing. The issues and
approaches explored are complementary, and there is much to
be gained from synergies and more aligned research agendas
for heterogeneous edge computing architectures.

Significant results to date have been obtained from the
combination of cognitive techniques and systems research.
However, the spectrum of approaches explored is very limited,
both from the cognitive and systems perspective. From the

0055-SIP-2007-PIEEE

11

cognitive perspective, a small amount of search techniques
from the wide range of available algorithms have been
applied, and a small number of learning techniques from the
many that exist. From the systems perspective, also a small
range of decisions have been explored and for each only a
small number of cognitive techniques have been used. For
example, while [Almagor et al 04] focuses on low-level
compiler optimization sequences (e.g., iteration peeling and
algebraic reassociation), [Stephenson et al 05] addresses
higher-level optimization decisions (e.g., loop unrolling).
Exploring the spectrum of techniques from the cognitive side
as they are applied to the spectrum of decisions in the system
side is a crucial area of future research.

Pursuing these research areas would bring us closer to a
new generation of systems for what we call strategic
optimization. Strategic decision-making approaches would
produce global optimizations for an entire application. In
contrast, we think of the approaches pursued to date as tactical
decision-making approaches, where the decisions are isolated
and often taken when little leeway is possible. In tactical
optimization, we are left making small decisions about loop
unrolling factors that lead to significant but very local
performance gains. In strategic optimization, we envision that
upstream decisions of which component implementation to
select would be taken in light of the available execution
architecture and taking into account the overall application
optimization choices. We believe that strategic optimization,
which optimizes application components in their execution
context, would result in unprecedented gains in programmer
productivity while achieving a high level of performance.

Combining human expertise and automation is also a
crucial area for future research. [Cavazos and Moss 04] prefer
to use machine learning algorithms that produce rules that are
expressive, compact, and more human readable than other
learning approaches such as neural networks. Looking at the
automatically learned rules, human experts could suggest new
features to the learning algorithm or add more examples not
covered under the current training set. [Cooper et al 05]
discuss how compiler settings can be selected by the
programmer in collaboration with the system. [Stephenson
06] explores collaborative compilation where a community of
programmers can contribute training data for learning
algorithms in a compiler, envisioning optimizing compilers
that are dynamically customized to a community of users and
their particular type of applications. There is a wealth of
research on cognitive techniques for human-machine
collaboration for complex problem solving for many other
domains that could be relevant for this area of research. For
example, planning and constraint checking techniques have
been demonstrated to assist users in workflow creation [Kim
et al 04]. One could imagine programming environments for
edge computing where intelligent assistance is used to extract
from the programmer crucial application features relevant to
performance, combined with automation of exploration and
learning of optimization strategies at the compiler level.
Programmers will remain at the application level, while the
system will take care of execution details and of learning

strategies to customize its behavior to the current architecture.

ACKNOWLEDGMENTS
We gratefully acknowledge funding from the National

Science Foundation under grants CSR-0615412 and CCF-
0725332 and from an internal grant by USC/ISI. We also
thank our many collaborators who have inspired some of the
ideas in this paper, and the referees for their helpful remarks.

REFERENCES
[Ceranowicz 05] Ceranowicz, A. & Torpey, M., (2005), Adapting to Urban
Warfare, The Journal of Defense Modeling and Simulation Vol 2 No 1,
January 2005, San Diego, California.

[Lucas 03] Lucas, R., & Davis, D., (2003),"Joint Experimentation on Scalable
Parallel Processors," in the Proceedings of the Interservice/Industry
Simulation, Training and Education Conference, 2003.

[Salomon 04] Salomon, B., Govindaraju, N. K., Sud, A., Gayle, R., Lin, M.
C., & Manocha, D., “Accelerating Line of Sight Computation Using Graphics
Processing Units”, Proc. of Army Science Conference, 2004.

[Tripp et al. 05] Tripp, J., Mortveit, H. S., Hansson, A., and Gokhale, M.
Metropolitan Road Traffic Simulation on FPGAs, In Proceedings of the 13th
Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM'05), 2005.

[Whaley 05] Whaley, R. C. and A. Petitet, A. Minimizing Development and
Maintenance Costs in Supporting Persistently Optimized BLAS, Software:
Practice and Experience, 35(2): 101-121, Feb., 2005.

[Frigo 05] Frigo, M. and Johnson, S. G. The Design and Implementation of
FFTW3, Proceedings of the IEEE, Special Issue on Program Generation,
Optimization, and Platform Adaptation, 93(2):216-231, Feb. 2005.

[Puschel et al. 05] Puschel, M., Moura, J.M.F., Johnson, J.R., Padua, D.,
Veloso, M. M., Singer, B. W., Xiong, J., Franchetti, F., Gacic, A., Voronenko,
Y., Chen, K., Johnson, R. W. and Rizzolo, N. SPIRAL: Code Generation for
DSP Transforms, Proceedings of the IEEE, Special Issue on Program
Generation, Optimization, and Platform Adaptation, 93(2):216-231, Feb.
2005.

[Allan et al. 06] Allan BA et al. A component architecture for high-
performance scientific computing. International Journal of High-Performance
Computing Applications 2006; 20:163.

[Yu et al. 2005] H. Yu, D. Zhang and L. Rauchwerger. “An Adaptive
Algorithm Selection Framework,” Proceedings of the Parallel Architectures
and Compilation Techniques, September, 2004.

[Thomas et al. 05] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N.
Amato, and L. Rauchwerger. “A Framework for Adaptive Algorithm
Selection in STAPL,” Proceedings of the Conference on Principles and
Practice of Parallel Programming, June, 2005.

[Gordon et al. 02] Gordon, M. and Thies, W. and Karczmarek, M., Lin, J.,
Meli, A.S., Leger, C., Lamb, A.A., Wong, J., Hoffman, H., Maze, D.Z. and
Amarasinghe, S. A Stream Compiler for Communication-Exposed
Architectures, ASPLOS, October 2002.

[Yoon et al. 07] Yoon, Y., Browne, J.C., Crocker, M., Jain, S., and Mahmood,
N. Productivity and Performance Through Components: The ASCI Sweep3D
Application, Concurrency and Computation: Practice and Experience
(CCPE), 19(5): pp. 721-742, April 2007.

[Rauchwerger et al. 2000] L. Rauchwerger, N. Amato, J.
Torrellas.“SmartApps: An Application Centric Approach to High
Performance Computing,” Proceedings of the Workshop on Languages and
Compilers for Parallel Computing, Aug. 2000.
[Vuduc et al. 2005] R. Vuduc, J. W Demmel, and K. A Yelick, “OSKI: A
library of automatically tuned sparse matrix kernels,” Journal of Physics:
Conference Series 16 (2005) 521–530.

[Gil 06b] Gil, Y. “Workflow Composition.” In Workflows for e-Science, D.
Gannon, E. Deelman, M. Shields, I. Taylor (Eds), Springer Verlag, 2006.

0055-SIP-2007-PIEEE

12

[Kim et al 07] Kim, J., Deelman, E., Gil, Y., Mehta, G., and Ratnakar, V.
“Provenance Trails in the Wings/Pegasus Workflow System.” To appear in
Concurrency and Computation: Practice and Experience, Special Issue on the
First Provenance Challenge, 2007.

[Li et al. 2004] X. Li, M. J. Garzaran, and D. Padua. “A Dynamically Tuned
Sorting Library,” Proceedings of the International Symposium on Code
Generation and Optimization, March 2004.

[Li et al. 2005] X. Li, M. J. Garzaran, and D. Padua. “Optimizing Sorting
with Genetic Algorithms,” Proceedings of the International Symposium on
Code Generation and Optimization, March 2005.

[Knijnenberg 04] P.M.W. Knijnenburg, T.Kisuki, K.Gallivan, and M.F.P.
O'Boyle, “The effect of cache models on iterative compilation for combined
tiling and unrolling. Concurrency and Computation: Practice and Experience,
16(2--3):247--270, 2004.

[Cohen et al. 07] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache.
“Iterative optimization in the polyhedral model: Part {I}, one-dimensional
time,” Proceedings of the International Conference on Code Generation and
Optimization, March 2007.

[Yotov et al. 2005b] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K.
Pingali, P. Stodghill. Is Search Really Necessary to Generate High-
Performance BLAS? Special issue on "Program Generation, Optimization,
and Platform Adaptation,” Proceedings of the IEEE, Vol. 93, No. 2, pp. 358-
386. February 2005.

[Cavazos et al. 2006] J. Cavazos, C. Dubach, F. Agakov, Edwin Bonilla, M.
O'Boyle, Grigori Fursin, and Olivier Temam. Automatic Performance odel
Construction for the Fast Software Exploration of New Hardware esigns. In
International Conference on Compilers, Architecture, And Synthesis For
Embedded Systems (CASES 2006), October 2006.

[Yotov et al. 05a] Yotov, K., Pingali, K., and Stodghill, P., Think Globally,
Search Locally, Proceedings of the International Conference on
Supercomputing, June, 2005.

[Chen et al. 05a] Chen, C., Chame, J., and Hall, M.W., Combining Models
and Guided Empirical Search to Optimize for Multiple Levels of the Memory
Hierarchy, Proceedings of the Code Generation and Optimization Conference,
March, 2005.

[Kelly 96] Kelly, W.A. Optimization within a Unified Transformation
Framework, PhD Dissertation, Dept. of Computer Science, University of
Maryland, Dec, 1996.

[Cohen et al. 05] Cohen, A., Girbalm S, Parello, D., Sigler, M., Temam, O.
and Vasilache, N. Facilitating the Search for Compositions of Program
Transformations, Proceedings of the International Conference on
Supercomputing, June, 2005.

[Chen 07] Chen, C. Model-guided empirical optimization on arbitrary loop
nests for memory hierarchy, PhD dissertation, Dept. of Computer Science,
University of Southern California, May, 2007.

[Soffa et al. 05] Zhao, M., Childers, B.R., and Soffa, M.L. A Model-Based
Framework: An Approach for Profit-Driven Optimization, Proceedings
of the Code Generation and Optimization Conference, March, 2005.

[Lee et al. 05] Lee, Y., Diniz, P., Hall, M. and Lucas, R. Empirical
Optimization for a Sparse Linear Solver: A Case Study, International Journal
of Parallel Programming, vol. 33, 2005.

[Kisuki et al 00]. Kisuki, T, Knijnenburg, P.M.W., and O’Boyle, M.F.P.
Combined Selection of Tile Sizes and Unroll Factors Using Iterative
Compilation, PACT 2000.

[Almagor et al 04] Almagor, L., Cooper, K.D., Grosul, A., Harvey, T.J.,
Reeves, S.W., Subramanian, D., Torczon, L., Waterman, T. Finding effective
compilation sequences Proceedings of the 2004 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for embedded systems
(LCTES’04), 2004.

[Gil et al 04] Gil, Y., Deelman, E., Blythe, J., Kesselman, C., and
Tangmurarunkit, H. Artificial Intelligence and Grids: Workflow Planning and
Beyond, IEEE Intelligent Systems, January 2004.

[Blythe et al 03] Blythe, J., Deelman, E., Gil, Y., Kesselman, C., Agarwal,
A., Mehta, G., Vahi, K. The Role of Planning in Grid Computing,

Proceedings of the 13th International Conference on Automated Planning and
Scheduling (ICAPS), June, 2003.

[Blythe et al 05] Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal,
A. and Kennedy. K. Task Scheduling Strategies for Workflow-Based
Applications in Grids, Proceedings of the Fifth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID), May 2005.

[Deelman et al 05] Deelman, E., G. Singh, M. Su, J. Blythe, Y. Gil, C.
Kesselman, J. Kim, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J.
C. Jacob, D. S. Katz. Pegasus: A Framework for Mapping Complex Scientific
Workflows onto Distributed Systems. Scientific Programming, Vol. 13, No. 3,
2005.

[Gil et al 07] Gil, Yolanda, Varun Ratnakar, Ewa Deelman, Gaurang Mehta,
and Jihie Kim. Wings for Pegasus: Creating Large-Scale Scientific
Applications Using Semantic Representations of Computational Workflows,
Proceedings of the 19th Annual Conference on Innovative Applications of
Artificial Intelligence (IAAI), July, 2007.

[Kim et al 04] Kim, Jihie, Marc Spraragen, and Yolanda Gil. “An Intelligent
Assistant for Interactive Workflow Composition”, Proceedings of the 2004
International Conference on Intelligent User Interfaces (IUI), Jan. 2004.

[Nilsson 80] Nilsson, N. Principles of Artificial Intelligence, San Francisco:
Morgan Kaufmann, 1980.

[Pearl 85] Pearl, Judea. "Heuristics: Intelligent Search Strategies for
Computer Problem Solving", Addison-Wesley, 1985.

[Goldberg 02] Goldberg, David E. The Design of Innovation: Lessons from
and for Competent Genetic Algorithms, Addison-Wesley, Reading, MA,
2002.

[Kirkpatrick et al 83] Kirkpatrick, S. and C. D. Gelatt and M. P. Vecchi,
Optimization by Simulated Annealing, Science, Vol 220, Number 4598, pages
671-680, 1983.

[Dechter 03] Rina Dechter. “Constraint Processing”. Morgan Kaufmann,
2003.

[Chen et al. 05b] Chen, C., Chame, J., Hall, M., and Lerman, K. A Systematic
Approach to Model-Guided Empirical Search for Memory Hierarchy
Optimization, Proceedings of the Workshop on Languages and Compilers for
Parallel Computing, October, 2005.

[Simon 69] H. A. Simon, "The Sciences of the Artificial". MIT Press,
Cambridge, MA, 1969.

[Korf 90] Korf R. E., Real-time heuristic search. Artificial Intelligence, 42,
189-211, 1990.

[Zilberstein and Russell 95] Zilberstein, S., and Russell, S. Approximate
reasoning using anytime algorithms. In Imprecise and Approximate
Computation. Kluwer Academic Publishers, 1995.

[Hansen and Zhou 07] Hansen, E. and R. Zhou. Anytime Heuristic Search.
Journal of Artificial Intelligence Research, 28: 267-297, 2007.

[Gil 06a] Gil, Yolanda. On Agents and Grids: Creating the Fabric of a New
Generation of Distributed Intelligent Systems, Journal of Web Semantics,
Volume 4, Issue 2, June 2006.

[Kaelbling et al 96] Kaelbling, L. P., Littman, M., L., and Moore, A. W.
Reinforcement Learning: A Survey, Journal of Artificial Intelligence
Research, Vol 4, pp. 237-285, 1996.

[Dietterich 00] Dietterich, T. “Hierarchical Reinforcement Learning with the
MAXQ Value Function Decomposition”, JAIR 13: pp. 227-303, 2000.

 [Hengst 00] Hengst, B. “Generating Hierarchical Structure in Reinforcement
Learning from State Variables”, Lecture Notes in Artificial Intelligence, 2000.

[Anderson et al 04] Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., and Qin, Y. “An Integrated Theory of the Mind”, Psychological
Review 111, (4). 1036-1060, 2004.

[Stephenson 05] Stephenson, M. and Amarasinghe, S. Predicting Unroll
Factors Using Supervised Classification, Proceedings of the Code Generation
and Optimization Conference, March, 2005.

0055-SIP-2007-PIEEE

13

[Cavazos and Moss 04] Inducing Heuristics to Decide When to Schedule,
Proceedings of the ACM SIGPLAN Conference on Programming Languages
Design and Implementation, June, 2004.

[Moss et al 97] Moss, E., Utgoff, P., Cavazos, J., Precup, D., Stefanovid, D.,
Brodley C. and Scheeff, D. Learning to Schedule Straight-Line Code, Neural
Information Processing Systems, 1997.

[Galstyan et al 05] Aram Galstyan, Karl Czajkowski, and Kristina Lerman,
(2005), Resource Allocation in the Grid with Learning Agents, Journal of
Grid Computing, 3, pp. 91-100, 2005.

[Stephenson 06] Stephenson, Mark. “Automating the Construction of
Compiler Heuristics Using Machine Learning”. PhD thesis. Computer
Science and Artificial Intelligence Laboratory. Massachusetts Institute of
Technology. May 2006.

