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Abstract—This paper describes several challenges facing 
programmers of future edge computing systems, the complex and 
diverse multi- and many-core devices that will soon exemplify 
commodity mainstream systems. To call attention to 
programming challenges ahead, this paper focuses on the most 
complex of such architectures: integrated, power-conserving 
systems, inherently parallel and heterogeneous, with distributed 
address spaces.   When programming such complex systems, 
several new concerns arise, such as computation partitioning 
across functional units, data movement and synchronization, 
managing a diversity of programming models for different 
devices, and reusing existing legacy and library software.  We 
observe that many of these challenges are also faced in 
programming applications for large-scale, heterogeneous 
distributed computing environments, and solutions used in 
practice as well as future research directions in distributed 
computing can be adapted to edge computing environments.  
Further, optimization decisions are inherently complex due to 
large search spaces of possible solutions and the difficulty of 
predicting performance on increasingly complex architectures.  
Cognitive techniques are well-suited for managing systems of 
such complexity.  We discuss how recent trends of using cognitive 
techniques for code mapping and optimization support this point. 
We describe how cognitive techniques could provide a 
fundamentally new programming paradigm for complex 
heterogeneous systems, where programmers design self-
configuring applications and the system automates optimization 
decisions and manages the allocation of heterogeneous resources 
to codes. 
 

Index Terms—Optimizing compilers, Learning systems,  
Computer architectures, Distributed computing, Multi-core 
architectures, Self-configuring applications 
 

I. INTRODUCTION 
eterogeneous systems are comprised of a variety of 
special-purpose computing engines, complex memory 
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hierarchies, and interconnects that link all of these resources 
together.  Technology advances such as exponentially 
increasing chip densities have pushed hardware designers 
towards devices with multiple processing cores to better 
manage design costs and energy consumption.  Heterogeneous 
devices can further exploit specialized functional units to 
increase performance and manage power for different phases 
of a computation.  Currently, there are available a proliferation 
of systems with heterogeneous processing capability at various 
scales – from systems-on-a-chip FPGAs such as the Xilinx 
Virtex 4, standard PCs with graphics processors, 
heterogeneous chip architectures such as the IBM Cell, 
domain accelerators such as Clearspeed, high-end systems that 
incorporate co-processors such as the Cray XD1, and 
distributed systems comprised of clusters of diverse resources. 

Heterogeneous platforms can accelerate many applications 
that mix compute-intensive and control-intensive phases of 
computation, which are best targeted to different processing 
elements.  These applications include large-scale scientific 
computations, complex simulations of physical phenomena, 
and visualizations.  One such example is entity-level 
simulations, wherein people and other entities are simulated 
by independent agents, are widely used for training and 
simulation.  The US Joint Forces Command’s (JFCOM) Urban 
Resolve experiment is an entity-level simulation that models 
military operations in urban terrain [Ceranowicz 05].  A 
million or more civilian entities are simulated to represent the 
complexity of a modern urban environment [Lucas 04].  These 
entities must determine if they are in the line-of-sight (LOS) 
of other entities, in particular models of sensor platforms.  As 
the scale and complexity of military training and 
experimentation increases, the time to determine whether or 
not entities can see each other can quickly become the 
computational bottleneck.  At their peak, LOS calculations can 
consume over half of the CPU time in urban scenarios such as 
JFCOM’s Urban Resolve.  To ensure that experiments 
progress in real time, Urban Resolve software engineers are 
forced to roughly halve the number of entities they could 
otherwise simulate.  Recent results demonstrate that LOS 
computations are well suited for execution on graphics co-
processing units (GPUs), providing an order of magnitude 
improvement in LOS performance [Salomon 04].  As a related 
example, traffic simulation of entire metropolitan areas has 
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been demonstrated using a mix of FPGA and conventional 
hardware [Tripp et al. 05].    

While heterogeneous systems are promising from a 
performance and power perspective, additional programming 
challenges arise, including: (1) partitioning of the application 
across functional units; (2) managing data movement between 
functional units; (3) differences in programming models and 
tools across functional units; and, (4) managing reuse of code 
developed by others.   Further, edge computing applications 
must be highly optimized for performance and power 
consumption.  Just to put these challenges in perspective, (1), 
(2) and (4) are also challenges in porting across different 
homogeneous platforms.  In the absence of tool support for 
this set of challenges, programmers of heterogeneous 
platforms must explicitly manage these details, which can 
dominate all other aspects of application programming for 
heterogeneous systems.  The net result is that developing and 
debugging programs on such systems can be quite tedious, and 
is only approachable by highly-skilled individuals.  A 
tremendous need exists for new approaches that can both 
increase the productivity of these highly-skilled developers 
and make these powerful systems more accessible to a 
broader group of users. 

Programmers of distributed applications face similar 
challenges.  Here, the focus is on collections of codes that are 
submitted for execution on distributed, heterogeneous 
resources, where the available resources may not be known 
prior to execution.  These applications are broken down into 
coarse-grain components, and each is assigned an aggregate 
resource (possibly a cluster) for execution.  The flow of data 
across components, usually external files, must be managed 
appropriately, as well as any dependencies.  Programmers of 
these distributed applications face a very diverse set of 
resources and requirements.  They also must manage software 
components developed by others, much like programmers of 
heterogeneous architectures incorporate software libraries 
developed by others. 

In this paper, we discuss programming challenges that, in 
our view, are common to heterogeneous platforms and to 
distributed heterogeneous systems.  We introduce the 
approaches taken so far in these two communities, and argue 
that many of the challenges and approaches are generally 
applicable to both kinds of heterogeneous computing.  This 
strategy is the result of our experiences in: (1) developing 
search-based compiler optimization for conventional memory 
hierarchies, FPGAs, and SIMD units in multimedia extensions 
and processing-in-memory devices; (2) cognitive techniques 
for managing large-scale distributed applications; and, (3) 
large-scale applications that will target edge computing 
systems.   

Our key observation is that a systematic and principled 
approach to developing and executing heterogeneous 
applications, making use of cognitive techniques, can greatly 
increase programmer productivity and application 
performance for edge computing platforms.    We introduce 
the concept of self-configuring applications, a new paradigm 
for heterogeneous programming that combines model-based 

software development and empirically-driven optimization.  
The role of a programmer with such an approach is to design 
models for software components that declare explicitly 
parameters and other aspects that can be optimized and 
managed by the underlying system.  The system, in turn, takes 
a proactive role in configuring the application by searching 
through the space of possible configurations guided by 
information learned from empirical data derived from prior 
executions. 

The remainder of the paper is organized as follows.  Section 
II discusses the programming challenges of heterogeneous 
platforms in more detail, drawing similarities to distributed 
computing environments.  Section III then proposes self-
configuring applications as a programming paradigm for 
heterogeneous platforms that incorporates cognitive 
techniques to represent and manage complex mapping 
decisions.  Section IV concludes the paper. 

II. PROGRAMMING CHALLENGES 
This section discusses the previously mentioned 

programming challenges, first as they apply to heterogeneous 
edge computing platforms and second to distributed 
heterogeneous systems, with a summary in Table I. In the next 
section, we will discuss strategies for how to address these 
challenges.  For this section, we assume an abstract 
architecture which includes a set of interconnected functional 
units of different capabilities, each with their own local 
memories, and with a global store.  One of the devices may be 
a host processor which maintains control of the other devices.  
Examples of different devices include commodity general-
purpose processors, SIMD functional units such as multimedia 

TABLE I 
PROGRAMMING EDGE COMPUTING VS. DISTRIBUTED COMPUTING 

 Edge Computing Distributed Computing 

Programming 
Model Diversity 

Parallel languages: 
pthreads, MPI, OpenMP, 
transactions;  
GPU languages: Ng, 
Cuda;  
FPGA: VHDL or 
Verilog; Stream 
processing: StreaMIT, 
Napa-C  

Sequential, OpenMP, 
MPI, Global Address 
Space Languages, 
mixed languages (C, 
Fortran, C++, Java) 

Libraries and 
Components 

Sources: Device-specific 
libraries; domain-specific 
libraries; application 
libraries.   
Interface. 

Sources: Target-specific 
code; domain-specific 
libraries; large-scale 
scientific simulation. 
Interface. 

Computation 
Partitioning 

Stream processing: DSP, 
GPU, Multimedia 
extension; 
Control-intensive: 
General-purpose; 
Configurable: FPGA 

Coarse-grain MPI code: 
large number of nodes; 
Data sharing: SMP; 
Sequential: single node 

Data Movement 
and 
Synchronization 

Communication and 
copying: To/from shared 
memory; To/from 
buffers; Between 
functional units. Impact 
on schedule. 

Data Products in Files: 
To/from different nodes 
or clusters; Data in 
catalogs; Intermediate 
data;  
Impact on schedule. 
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extensions, DSPs, FPGAs, GPUs, and domain accelerators 
such as Clearspeed.  

A. Diversity of Programming Models 
Perhaps the biggest challenge in targeting heterogeneous 

platforms is that each device may support a completely 
different programming model.  An extreme example is a 
system that includes general-purpose processors, which are 
programmed with standard programming languages such as C 
and Fortran, coupled with FPGAs, which are traditionally 
programmed with hardware description languages such as 
VHDL and Verilog.  While some C dialects exist to program 
FPGAs, for the most part these impose requirements on the C 
constructs that can be used and require hardware descriptions 
that are quite different from standard software programs.  
GPUs also have their own programming languages, such as,   
for example, Ng (for graphics programs) and Cuda (for 
application programs) by Nvidia.  GPU-specific languages are 
needed because GPUs have a unique hierarchical structure of 
processing units and memories, and many constraints on the 
type and number of instructions that certain functional units 
can execute.  Stream processing and data-parallel languages, 
which allow programmers to express repeated operations on 
data streams, can be used to target digital signal processing 
(DSP), multimedia extensions and other similar devices.  In 
each case, the programming model facilitates expressing 
computation well-suited to the device while managing the 
constraints imposed by the architecture. 

In distributed computing applications, codes are often 
written in different languages, and for different target 
architectures and classes of target architectures. Sequential 
portions of the code may be written in Java for a uniprocessor, 
while other portions are large-scale codes written in MPI.  Still 
others might be developed for shared-memory multiprocessors 
and written in OpenMP, and hybrid MPI and OpenMP 
programs and use of modern global address-space languages  
such as UPC are becoming more common.  Beyond the 
diversity of programming languages, distributed applications 
incorporate application binaries that have been already 
compiled for specific target architectures. Programmers need 
to select appropriate executables once the resources are 
selected.  Further, beyond selecting resources based on the 
application properties, different types of resources are 
managed by different systems.  Jobs may be submitted 
through different queues that have different policies regarding 
job length and priorities. Programmers also need to understand 
how much computation to fit within a job, by estimating the 
time that each of their many computations will take to execute 
and grouping them into jobs of a reasonable size.  Creating 
adequate granularity for computations based on resource 
policies is an art, often learned through trial and error.   

While it might seem beneficial if all of these resources 
could be programmed using the same universal programming 
model, this is an unrealistic goal, as it would: (1) compromise 
the strengths of the existing programming models for their 
own platforms; (2) make it impossible to incorporate legacy 
code into edge computing applications; and, (3) fail to be 

adopted by the community, as there will never be consensus 
on what is the right universal programming model.  The 
appropriate strategy for managing a diversity of programming 
models must address these three considerations, as discussed 
in Section III.  

B. Legacy Code and Highly-Tuned Libraries 
Incorporating legacy code into edge computing platforms 

includes not only existing application code, but also highly-
tuned libraries that have been designed for a particular device 
type. Vendors of commodity devices develop highly-tuned 
libraries to encourage adoption of their hardware.  Prior to the 
availability of compilers and other programming tools for a 
new platform, such libraries provide a shortcut to obtaining 
high performance for application domains with common core 
computations that can be developed into libraries.  Similarly, 
researchers develop highly-tuned domain-specific libraries 
designed to be portable across platforms, with notable 
examples including BLAS and ATLAS for linear algebra 
[Whaley 05] and FFTW [Frigo 05] and SPIRAL [Puschel 05] 
for signal processing.  

In distributed computing, applications are often formed by 
composing codes developed independently.  Many alternative 
encapsulations may be possible for already existing codes.  
Further, it is possible that various different implementations of 
the same component are available, each optimized for a 
specific architecture.  Programmers then need to select the 
appropriate implementation for the resources assigned to the 
computation.  This becomes a complex decision when many 
resources and many alternative implementations may be 
available and thus the space of choices becomes 
unmanageable and hard to optimize by hand. 

C. Partitioning Across Functional Units 
Edge computing systems include a diversity of functional 

units, each with unique capabilities for which they are best 
suited.  If an application kernel is data-intensive, performing 
repeated operations on a stream of data, a DSP or GPU may be 
a good target functional unit.  If it is instead control-intensive, 
a general-purpose processor or a special-purpose control 
processor would be a better choice.  If specialized arithmetic 
modes are needed, these tend to be supported best by DSP or 
multimedia extension architectures.  FPGAs are effective for 
computations that can be highly specialized to exploit 
parallelism, fine-grain data movement such as bit 
manipulation, and custom data types such as arithmetic on 
small objects.  The decision as to which functional unit is best 
for a computation is called computation partitioning.  This 
decision must consider not only which device can perform the 
computation most efficiently, but also whether the benefit of 
performing a computation on a particular device outweighs the 
cost of migrating the computation and associated data to/from 
the device, as discussed in Section D. 

Similarly, complex distributed applications are often broken 
down into components that are designed for specific 
architectures depending on their characteristics.  For example, 
a component that realizes a highly parallelizable code may be 
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implemented as an MPI code optimized for a 128-node 
cluster, while another component may contain simpler 
computations and be implemented as a Java code that will 
work on any 64-bit Opteron.  Parallel codes that have a lot of 
data sharing, and would perform poorly on clusters, may be 
better-suited for shared-memory multiprocessors.  There are 
natural boundaries created by the requirements of the different 
aspects of the computation, and therefore the applications end 
up being modularized accordingly.  Programmers, however, 
need to manage partitioning as well, by grouping together 
components that can be bundled for execution in a single 
resource so as to reduce queuing time.  

D. Managing Data Movement and Synchronization 
For an architecture that includes a set of independent, 

interconnected functional units, a key challenge in developing 
both correct and high-performing applications is managing the 
movement of data and synchronization among functional 
units.  Data must be staged not only between functional units, 
but between global memories and local memories or buffers. 
This requires careful scheduling of data movement relative to 
computations, to ensure the correct data is available when it is 
needed. 

In distributed computing, data must be staged in and out of 
catalogs where data collections are stored and managed.  The 
results of intermediate computations that will be used in 
subsequent computations at the same location should remain 
available if possible.  Programmers must be aware of the 
location of intermediate data products in making decisions 
about later computations, and must also be aware of memory 
requirements and availability.  If memory availability at a 
location is insufficient, failures must be analyzed and repaired 
either through higher memory requests or by assigning the 
computation to alternate locations. 

Related to computation partitioning, programmers of both 
types of systems also must consider cost of data movements 
among resources where the computations occur.  When data 
movements take significant time compared to the time taken 
by the computations, selecting suboptimal resources for the 
computations themselves may be preferable if the data 
movements are reduced significantly.   

E. Summary 
This section described a large set of decisions that must be 

made by programmers of heterogeneous systems, representing 
a vast tradeoff space of possible solutions.  Not only do these 
decisions affect performance of the result, but they also must 
be carefully managed to guarantee a correct program.  The 
difference in complexity, in terms of development time, 
between a sequential application written for a homogeneous 
system and a parallel or distributed application for a 
heterogeneous platform can be several orders of magnitude, 
with the resulting code size also growing by more than an 
order of magnitude. Errors abound, as with any manually 
managed process, and users need to be able to understand 
error conditions and repair failures. Extending the application 
has cascading effects that have to be managed manually, 

making it impractical unless the additions were anticipated in 
advance.  As we move to increasingly heterogeneous 
platforms of the future, having appropriate architecture-
independent programming paradigms becomes of paramount 
importance. 
 

III. SELF-CONFIGURING APPLICATIONS: A NEW 
PROGRAMMING PARADIGM FOR HETEROGENEOUS 

COMPUTING 
In the previous section, we discussed a set of programming 

challenges currently faced by programmers of edge computing 
systems.  In this section, we propose an approach, based on 
partial solutions from the literature, which would provide 
assistance or automate many of these decisions currently left 
to the programmer. Some of this prior art comes from existing 
distributed computing systems, while the rest reflects new 
strategies for code optimization.  We introduce the concept of 
self-configuring applications, whereby the programmer 
expresses an application as a high-level workflow comprised 
of tunable software components that are abstractions of 
implemented codes.  The high-level workflow is instantiated 
and optimized for the edge computing platform, in the 
presence of training data that is representative of real 
execution environments.  The optimization process relies on 
empirical search to execute and evaluate portions of a 
collection of equivalent alternative implementations of the 
workflow for the most suitable implementation.  Machine 
learning, a rich knowledge representation, and an experience 
base aid in pruning and navigating the search space.  Thus, 
through a systematic and principled strategy for formulating 
application optimization for heterogeneous platforms, the 
programmer’s partial specification of a high-level workflow is 
realized as an edge computing application, as will be 
discussed in this section. 

A. Self-Tuning and Selectable Components  
Workflows represent complex applications as components and 
their associated data flow.  Before describing how workflows 
are expressed, we first focus on properties of components that 
could be used to instantiate and optimize workflows for edge 
computing.  A component is a code segment packaged with 
the interfaces needed for someone other than the component 
developer to correctly invoke and use the component in an 
application.  Component technology has been commonly used 
for over a decade as a strategy for facilitating code reuse and 
interoperability.  As one notable example, the Common Object 
Request Broker Architecture (CORBA) facilitates 
interoperability between two programs, potentially written in 
different languages and executing on different vendor’s 
platforms. Despite the existence of CORBA and other 
component standards, where high performance or efficiency is 
required, such as in very high-end systems and embedded 
systems with hard timing and resource constraints, component 
technology is usually dismissed by application developers, 
who perceive component packaging as introducing too much 
overhead to be practical.  Due to the growing complexity of 
application codes in these high performance or high efficiency 
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regimes, recent efforts have introduced component technology 
that has lower overheads and/or richer interfaces, e.g., 
Common Component Architecture (CCA) for high-end 
computing [Allan et al. 06], and DoD’s Software 
Communications Architecture (SCA) for embedded software 
radio applications.  

Why components are needed? 
The use of components in edge computing addresses several 

of the challenges in Section II.  From the workflow 
perspective, it provides a sufficiently coarse-grain boundary 
for reasoning about application composition and optimization.  
It provides a unified mechanism for applications that mix 
legacy code, highly tuned libraries, and new self-configuring 
components either written by an application developer or 
generated automatically by a compiler.   At the component 
level, the same programming model is used, regardless of 
functional unit and data movement protocol.  Details of 
invoking a particular functional unit are managed by the 
system, replacing abstract data movement specifications with 
device-specific libraries.  In the extreme example of 
programming model diversity, combining general-purpose 
with FPGA devices, computations to be performed on the 
FPGA appear no different than other software components.  
This overall strategy is consistent with Sun’s Fortress 
language for High Productivity Computing, which is designed 
around the concept of building applications through 
composing libraries. 

Requirements for components of self-configuring applications 
A component for self-configuring applications must support 

automatic code selection and achieve high performance or 
high efficiency, and therefore goes beyond the traditional 
concept of facilitating software reuse and interoperability.  
The requirements are as follows: 

• Interchangeable code variants: the interface describes 
features of the implementation and their relation to 
input data characteristics.  This information can be used 
by the system to select the appropriate component for a 

given functional unit. 
• Self-tuning: the interface exposes optimization 

parameters used to adjust performance based on data 
features. 

• Lightweight: the executable interface must have low 
execution time and storage overheads. 

The remainder of this subsection focuses on details of these 
properties and how they are used in self-configuring 
applications. 

Components as part of workflows. 
To manage the workflow at the application level and at the 
resource level, the component models used by workflow 
systems include three distinct aspects: a functional model, an 
invocation model and a performance model.  The functional 
model includes the type and order of input data, arguments 
and parameter information, and output data. The functional 
model is used to communicate with the programmer at the 
application level. It also allows the workflow system to reason 
about the interactions among components in the workflow, 
and support programmers in workflow creation and validation.  
The invocation model provides the information needed by the 
system to map components for execution: a calling sequence, 
a pointer to the source or binary code, the device for which it 
has been developed, and any other requirements.  In 
distributed computing, the invocation model is used by the 
system to generate mappings to execution sites that comply 
with the component requirements.  The invocation model is 
also used to manage and optimize data movements.  The 
performance model will capture all of the aspects of the 
component used in optimization, including expected execution 
time of the code on a particular device based on training data, 
and parameters of optimization that can be adjusted off-line or 
dynamically, such as loop unroll factors, a mapping between 
data set features and values of these parameters.  These 
performance models could be improved over time through 
empirical data of actual performance of the component. 

Given this set of models, workflows may include abstract 
descriptions of components.  That is, instead of specifying a 
particular component implementation, the workflow can refer 

  
Fig. 1.  A comparison of traditional and proposed components. 
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to a category or type of component.  For example, a workflow 
could simply indicate the functional characteristics required to 
process data at that particular point in the application.  These 
functional characteristics may then be realized by multiple 
components.  This gives the system tremendous flexibility in 
terms of choosing which instantiation of the component to 
select based on the input data and the resources available for a 
given execution.  

Figure 1 shows how components appear in the system to 
support this process.  In a traditional view, component 
descriptions include code (source or binary) as well as an 
interface that describes the functional behavior of the 
component (what functions are provided externally and 
required from the external environment), and a description of 
the data that will be provided as input to the component.  

These notions are extended in the proposed framework.  In 
terms of interface, for the functional model, it must match an 
abstract interface that describes a set of alternative 
implementations to be selected during workflow instantiation.  
To support the execution model, any device dependences are 
described – for binaries targeting a specific device, the device 
itself is reported, while for source code, the programming 
model and any compiler dependences are described, in effect 
an assertion of what tools are likely to support the component.  
In addition, rather than including code, partial code is 
provided (either parameterized source or tunable binary), with 
a code generation mechanism to finalize code generation in 
the context of the provided data.  Included with the data 
description is a mapping of data features to code optimization 
strategy, to guide code generation.  Finally, to support the 

 
 

 
 
 
Fig. 2.  Creating a self-configuring application as a workflow.  The top portion describes the steps, and the bottom portion shows an example workflow. 
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performance model, expected or measured performance is 
reported for specific devices and specific data features.  Many 
of these concepts have been demonstrated in the Standard 
Template Adaptive Parallel Library (STAPL) framework, 
which provides tuning parameters, data features and 
instantiated learners as part of the library components to 
enable dynamic algorithm selection [Yu et al. 2004][Thomas 
et al 2005]. 

Can we make components lightweight enough? 
The minimal component interface must verify the correctness 
of the invocation model, and manage the movement of data 
between devices.  More complexity may be added if 
optimization decisions including code selection and parameter 
identification are performed dynamically.    While this 
additional abstraction will indeed add overhead, components 
ought to be somewhat coarse-grained – as we switch to a new 
functional unit, even a hand-tuned application also involves 
data copying.  Thus, the overhead should be small relative to 
the key computations.  The system can optimize workflows by 
merging small components for the same device, or exploit 
data-parallelism by splitting coarse-grained components, 
similar to the notions of combining and splitting streams in 
StreaMIT [Gordon et al. 02].   Recent results on component 
technology show a performance improvement in the use of 
components due to the benefits of breaking code into 
manageable chunks that are more effectively optimized by a 
compiler, as long as the per-processor computaition 
granularity of the component is sufficiently large [Yoon et al 
07].  The SmartApps system employs customization of run-
time services as part of the application code to reduce 
component overhead [Rauchwerger et al. 2000]. 

B.  Composing and Optimizing Workflows 
Representing workflows at multiple levels of abstraction is 

critical to facilitate code reuse and automate many 
implementation aspects that are not expressed directly in the 
application.  We consider three stages of creation of 
workflows, each stage corresponding to a different type of 
information being added to the workflow:  
1. Defining workflow templates that are data- and execution-

independent specifications of computations. Workflow 
templates identify the types of components to be invoked 
and the data flow among them. The nature of the 
components may constrain the input data that the 
workflow is designed to process, but the specific data set 
to be used is not described in the template.  This level of 
specification supports analysis of potential instantiations 
of the workflow, but there is not enough information to 
perform optimization.  A workflow template should be 
shared and reused when performing the same type of 
computations.  

2. Creating workflow instances that are execution-
independent. Workflow instances specify the input data 
needed for an application. A workflow instance can be 
created by selecting a workflow template that describes 
the desired application and binding its data descriptions to 
specific data to be used (or representative data).  The 

concrete optimization criteria are also specified here, such 
as whether to focus on end-to-end performance, 
throughput, power, or a combination, and if needed, 
specific requirements for each of these.  While a 
workflow instance logically identifies the full application, 
it does not include execution details such as what 
hardware resources should be used or where data should 
be placed. That is, the same workflow instance can be 
mapped into different executable workflows that generate 
exactly the same results but use different resources 
available in alternative execution environments.  A 
workflow instance can be optimized off line to derive a 
collection of possible components that can incorporated 
into the application, parameterized by anticipated features 
of the execution environment.  

3. Creating executable workflows. Executable workflows are 
created by taking workflow instances and assigning actual 
resources that exist in the execution environment and 
reassigning them dynamically as the execution unfolds. 
Executable workflows fully specify the resources 
available in the execution environment (e.g., hardware 
and memory resources) that should be used for execution. 
The system can also automatically insert requisite data 
movement and data staging steps.  This mapping process 
ideally is incremental and dynamic. Only the initial 
workflow steps might be assigned to resources, while 
later steps can wait until the execution of the initial steps 
is finalized, responding to application behavior as it 
unfolds.  Any decisions made during this mapping must 
be on line and therefore instantaneous.  The complex 
tradeoffs must be evaluated for workflow instances and 
then used here.  

The evolution of a workflow through these three stages is 
summarized in the upper portion of Figure 2 and illustrated in 
the lower portion with an example.  Ovals indicate 
computations, and rectangles indicate data.  The workflow 
template has a portion that will process data in parallel 
(highlighted by the dark grey rectangle).  The workflow 
instance includes specific computations for each slice of the 
specific dataset to be processed.  Finally, the executable 
workflow (showing here only computations and not data) 
includes all details required to execute the computations in 
different resources as well as data movement steps.  More 
details of this process are described in [Gil 06b; Kim et al 07; 
Gil et al 07; Deelman et al 05]. 

In summary, self-configuring applications can be managed 
automatically when the system can access to: (1) expressive 
models of workflow components, (2) workflow 
representations at different levels of abstraction, and (3) 
alternatives for completing user-provided partial workflow 
descriptions. These enable increased automation of workflow 
creation and execution management tasks to relieve the 
programmer from the complexities of the heterogeneous 
execution environment. 

C. Compiler Technologies and Generating Components 
The preceding discussions of components and workflows 
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did not address how the various facets of the components, 
beyond application code, would be derived.  System-level and 
device-specific compilers must play a critical role in 
assembling this information, in conjunction with the execution 
environment which captures execution history. 

How to generate self-configuring components.   
Compiler optimization typically performs a static analysis 

of application code and generates a single binary of the code.  
Due to the complexity of today’s architectures, such a static, 
purely model-based approach generates code that falls far 
short of hand-tuned levels of performance.    Recent work has 
dealt with the complexity of modern architectures through 
empirical techniques, where optimization decisions are guided 
by executing code variants directly to measure and compare 
performance.  This research began by developing domain-
specific libraries such as ATLAS for linear algebra [Whaley et 
al. 05], FFTW [Frigo et al. 05] and SPIRAL [Puschel et al. 05] 
for signal processing, OSKI for sparse linear algebra [Vuduc 
et al. 2005] and sorting libraries [Li et al. 2004][Li et al. 2005] 
as notable examples.   

For all of these domain-specific libraries, manual 
optimization strategies have been developed over many years, 
and as a consequence, much domain knowledge exists 
regarding how to yield high performance given different 
architectural features.  This domain knowledge is incorporated 
into the optimization strategies.  Empirical techniques simply 
select among alternative optimization strategies and identify 
values of optimization parameters.   

While such libraries are without question very useful to 
obtaining high performance on edge computing platforms, an 
application developer cannot always count on the availability 
of such libraries to implement all the performance-critical 
portions of their application.  Therefore, compiler technology 
that can incorporate empirical techniques to tune application 
code, if able to achieve close to hand-tuned levels of 
performance, would be highly desirable to dramatically 
improve programmer productivity.   

This goal has inspired several compiler efforts that employ 
empirical optimization to evaluate alternative compiler 
optimization strategies, leading to much higher performance 
than the standard compiler approach that relies on static 
models.  Examples of these include work on iterative 
compilation [Knijnenberg et al. 04], and recent work using 
polyhedral transformation frameworks [Cohen et al. 07]. 

Models have been shown to achieve results close to hand-
tuned performance [Yotov et al. 05b], and sophisticated 
approaches using training and mutual information 
maximization can quickly generate fairly accurate models 
[Cavazos et al., 2006], but due to the growing complexity of 
predicting interactions of different architectural features, there 
is nevertheless a performance gap between optimizations 
based purely on models and those using empirical techniques. 

A hybrid approach called model-guided empirical 
optimization combines the complementary strengths of 
compiler models and heuristics with empirical techniques 
[Chen et al 05a].  The models and heuristics limit the search to 
a small number of candidate implementations, and the 

empirical results provide the most accurate information to the 
compiler to select among candidates and tune optimization 
parameter values.  Others have also shown success with 
hybrid techniques combining models and empirical search 
[Yotov et al. 05].  Using such an approach, compilers can 
achieve results comparable to hand-tuned for dense-array 
computations, as compared against hand-tuned libraries [Chen 
et al 05b, Yotov et al. 05]. 

Compiler as experiential engine. 
Using model-guided empirical optimization, the compiler 

generates a set of experiments to perform a search among 
possible implementations and optimization parameter values.  
In the previous discussion, the experiments were the result of 
compiler algorithms.  However, the compiler can also serve as 
an experiments engine for the application programmer, 
assisting with evaluating application-level parameters.  For 
example, a programmer who wants to direct the compiler to 
evaluate a set of alternative unroll factors for a loop nest can 
be supported by an experiments engine that generates the 
alternative code segments, executes them, and determines the 
most appropriate for a class of data sets [Lee et al. 05]. 

Compilers that can be conveniently retargeted. 
If as previously described we construct compilers that can 

systematically search a space of alternative optimization 
strategies, then by construction, the compiler design ought to 
also be systematic.  We envision a compiler that is constructed 
in a principled way, so that optimizations are well-defined and 
easily composed.  Today’s compilers are monolithic and very 
large -- in the hundreds of thousands or even millions of lines 
of code.  Optimization strategies are complex, sometimes 
fragile, and often obscured and buried within the compiler 
modules.  Optimizations are typically composed by applying 
each one independently, rather than combining them to 
achieve the best effect.   

We propose a compiler based on formal descriptions of 
optimization behavior that can easily be composed.  While not 
possible for every optimization, several prior works describe 
such an approach for loop transformations, commonly used for 
array-based computations that arise in scientific computing, 
and multimedia applications [Kelly 96, Cohen et al. 05, Chen 
07].  A similar idea has been described for more standard 
scalar optimizations [Soffa et al. 05]. Formalizing the 
optimization framework and making optimizations 
composable facilitates generating decision procedures for 
optimization that are easily understood and can be constructed 
or modified rapidly.  This approach makes it possible to in 
turn rapidly retarget such decision procedures from one device 
architecture to another.  In conjunction with searching, 
discussed in the next section, such an approach creates a 
powerful approach to compiler design that can assist in 
targeting heterogeneous resources. 

D. Searching for the Best Solution 
We have discussed so far how many different types of 

decisions could be made automatically to reduce the 
complexity faced by a programmer in edge computing 
platforms. Such decisions can take into account application-
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level features, such as the density of a graph or the 
connectivity within a partitioned data set, or target hardware 
architectures, such as data storage locations, execution 
resources, data movements, etc.  Today, these decisions and 
the associated search are hard-coded in the compilers or the 
workflows.  When a new hardware platform appears, costly 
resources must be devoted to writing new compiler systems 
that manage those decisions in a manner that is customized to 
the particular features of the platform.  Today, we already find 
that it is expensive to experiment and explore the best 
compiler design for a new platform.  For the new edge 
computing architectures of tomorrow, this mode of operation 
will be absolutely impractical. 

Cognitive techniques provide a systematic and principled 
paradigm to manage these decisions and to automate as many 
of them as possible.  We envision two major benefits to come 
from these techniques.  First, we anticipate significant 
productivity gains for programmers.  Because programmers 
today must manually experiment and learn how to optimize 
codes for each type of application and for each type of target 
architecture, programming is largely manual and has a costly 
learning curve. The second anticipated benefit is major 
performance improvements for applications.  Because 
programmers today are not necessarily knowledgeable of the 
best optimization strategies for a given architecture, we 
believe that automating many of these decisions will lead to 
significant performance improvements across the spectrum of 
applications. 

A rich area for cognitive search techniques concerns global 
decisions regarding the ordering of optimizations to apply to 
the code. This issue is complicated by the fact that there may 
be complex interactions among the decisions involved in the 
various optimization steps that affect the performance of the 
resulting code, and the fact that the right decision depends on 
the target architecture [Kisuki et al 00].  The work by 
[Almagor et al 04] exemplifies the benefits of representing and 
analyzing the search space to improve performance.  Three 
distinct search algorithms generated orderings with 15% to 
25% better performance than the human-designed fixed 
sequence originally used in the compiler.  This work provides 
strong evidence that search techniques could effectively 
improve the performance of optimizing compilers. 

In distributed environments, specialized cognitive search 
algorithms such as planning and scheduling have been used to 
select workflow components and to select execution resources 
[Gil et al 04; Blythe et al 03; Blythe et al 05]. Optimization 
techniques that include workflow restructuring have been 
explored in [Deelman et al 05].  Expressive representations of 
workflows include rich metadata propagation rules and 
semantic hierarchies of component and data types [Gil et al 
07; Kim et al 04].  Defining layers of abstractions over the 
decision space is an effective way to structure the search space 
and explore different decisions with appropriate search 
algorithms for each. [Gil et al 07] describe a layered approach 
to workflow creation that started with a high-level description 
of an earthquake simulation workflow.  This workflow 
instance was automatically assigned resources and data 

movements to result in an executable workflow of 24,135 jobs 
and that executed for a total of 1.9 CPU years. 

Relevant cognitive search techniques include systematic 
search, approximate search, and constraint-based search.  
Systematic search algorithms are designed to consider 
decisions in a principled manner, ensuring that all possible 
partial combinations of decisions are represented in the search 
space and visited at least once during the search [Nilsson 80]. 
Systematic algorithms can be made more efficient by 
incorporating heuristics to prioritize and eliminate portions of 
the search space [Pearl 85].  Properties of heuristics such as 
admissibility can be defined that guarantee certain properties 
of the search process.  Approximate search algorithms explore 
the space of possible solutions not by exploring partial 
combinations of decisions and appending new ones but by 
navigating complete solutions and their variants [Goldberg 02; 
Kirkpatrick et al 83].  Examples include genetic algorithms 
and simulated annealing.  Finally, constraint-based search 
algorithms explore the space of interrelated constraints among 
variable values associated with the decisions to be made 
[Dechter 03]. 

To exploit cognitive search techniques for edge computing, 
several areas of research much be addressed.  The first step 
will be to articulate and represent declaratively the kinds of 
decisions that can affect the quality of the programming 
solution, and how these decisions are related to application-
level and hardware architecture features.  Such an approach 
for loop transformations for memory hierarchy is described in 
[Chen et al. 05b].  By representing declaratively all these 
decisions, the search for a solution and better yet the search 
for an optimal (or quasi-optimal) solution can be conducted by 
using a variety of well-known algorithms and optimization 
techniques.  In addition, declaratively representing these 
decisions will enable a better understanding of their nature and 
their interdependencies.  This determines the complexity of 
the search and more importantly it determines what the best 
algorithm and search strategy is.  

Search techniques for compiler optimization have the 
additional requirement of on-line response.  That is, faster 
response is crucial and sub-optimal decisions in that time 
frame are far better than slower but optimal response.  This is 
desirable for off-line optimization, but an essential 
requirement when code is optimized at run time.  There is a 
clear tradeoff between search time and solution quality, where 
more time allows the algorithms to search a larger portion of 
the solution space and therefore have a better chance to find 
optimal or closer to optimal solutions.   Fortunately, the 
tradeoff between search time and solution quality has been 
present in Artificial Intelligence research since its inception, as 
humans are notorious for managing this tradeoff and approach 
complex problems as sub-optimal decision makers [Simon 
69].  In addition, there is a wealth of research on a special type 
of search algorithm called "real-time" or "anytime" search 
algorithms [Korf 90; Zilberstein & Russell 95; Hansen & 
Zhou 07].  These algorithms are designed to have several 
important properties: (1) an initial and likely sub-optimal 
solutions is found quickly; (2) at any time, a solution can be 
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returned by the algorithm; and, (3) the quality of the solution 
returned improves as the algorithm is given more time to 
search the solution space.   

Search techniques for distributed workflow environments 
have an additional and important requirement.  The dynamic 
availability of distributed resources, where network 
connections may fail or resources may be temporarily 
withdrawn, requires search techniques that can handle 
uncertainty and replanning.  In addition, optimization 
techniques must take into account other workflows and 
applications running on the same hardware.  Many cognitive 
techniques are applicable in this context, including uncertainty 
reasoning, abstraction search, and metareasoning [Gil 06a].  
Programming in edge computing environments may benefit 
from addressing these issues as well. 

In summary, programming for edge computing architectures 
presents a complex optimization problem.  We have advocated 
for the automation of the process with cognitive techniques, so 
that the best algorithms can be identified based on their 
computational properties to address the vast search space and 
highly interdependent optimization criteria.   

E. Learning from Experience 
Machine (automated) learning is another cognitive 

technique that will be advantageous to support programming 
for unforeseen heterogeneous computing architectures and 
applications.  While learning may not be a strict requirement 
for architectures and applications where human expertise 
exists or can be developed, it will be absolutely necessary to 
learn to search and optimize the space of decisions when 
completely new architectures and applications appear with the 
envisioned complexity, heterogeneity, and uniqueness. 

Learning techniques are used routinely to develop 
intelligent agents that make decisions while learning not to 
repeat the same mistakes and to improve their performance in 
tasks they perform routinely. Learning ranges from simply 
collecting performance metrics and deriving statistical 
predictive models, to more complex learning where efficient 
search heuristics are derived by reasoning about the properties 
of a problem domain.  Learning can also improve performance 
by recognizing common failure conditions and designing 
mechanisms to anticipate and avoid them.  Effective learning 
techniques relevant here include reinforcement learning from 
reward feedback, learning Markov decision processes to 
improve overall policies, and symbolic compilation of 
behavior-triggering rules [Kaelbling et al 95; Dietterich 00; 
Hengst 00; Anderson et al 04].  

A rich area for cognitive learning techniques is 
automatically learning local decisions concerning individual 
optimizations.  Typically, the problem is cast as parameter 
selection for a given optimization, such as determining 
whether a loop should be unrolled and the unroll factor.  
Recent work demonstrates that machine learning techniques 
could effectively be used to automate the construction of 
compiler optimization heuristics [Stephenson et al 05]. The 
compiler developer hand-selected code features believed to be 
relevant to making decisions for loop unrolling heuristics.  

Loops in a suite of benchmarks were annotated regarding the 
value of each of these features and which unroll factor yields 
the best performance.  This represents a kind of machine 
learning problem called classification: given a set of feature 
values, which decision (unroll factor value) is most 
appropriate.  Two machine learning algorithms were trained, 
Nearest Neighbor (NN) and Support Vector Machine (SVM).  
Both algorithms were trained off-line based on the labeled 
benchmark data, and the results were tested against new codes 
and compared with the existing loop unrolling in the compiler, 
achieving up to a 9% overall performance improvement.  
Given that the features used by these classifiers can be 
automatically extracted from code, and given that the 
performance of the learned heuristics is as good or better than 
manually developed heuristics, this work provides strong 
evidence that machine learning techniques could effectively 
automate an otherwise costly and non-portable compiler 
development effort.   

Another kind of decision is whether or not a given 
optimization should be done at all given what other 
optimizations are being planned.  The work by [Cavazos and 
Moss 04] exemplifies the benefits of this line of research, and 
investigates machine learning techniques to decide whether to 
schedule a block of instructions.  The decision is also framed 
as a classification problem for machine learning.  A dozen 
features were identified as relevant, and a number of blocks in 
a benchmark suite were annotated regarding whether or not 
scheduling improved the block.  Using a well-known rule-
learning algorithm, they obtained over 90% of the 
improvement of block scheduling with less than 25% of the 
effort.  In related work, [Moss et al 97] explored learning 
techniques to decide which instruction to schedule next.  
These results demonstrate the effectiveness of learning 
techniques to select transformations in adaptive compilers. 

In the context of resource selection in distributed workflow 
systems, learning techniques have also been explored but in 
more limited ways than they have in adaptive compilers 
[Galstyan et al 05].  These techniques would be beneficial in 
edge computing in selecting resources for blocks of code. 

In summary, a fertile area of future research is the rich 
representation of the decisions and the relevant features 
involved in adaptive compilers for edge computing.  An 
important additional research area demands a more extensive 
exploration of available cognitive learning techniques that are 
best suited to each aspect of the optimization process. 

IV.  CONCLUSION 
We have argued that distributed systems and compiler 

systems research have investigated very relevant issues to the 
future of programming for edge computing.  The issues and 
approaches explored are complementary, and there is much to 
be gained from synergies and more aligned research agendas 
for heterogeneous edge computing architectures. 

Significant results to date have been obtained from the 
combination of cognitive techniques and systems research.  
However, the spectrum of approaches explored is very limited, 
both from the cognitive and systems perspective.  From the 
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cognitive perspective, a small amount of search techniques 
from the wide range of available algorithms have been 
applied, and a small number of learning techniques from the 
many that exist.  From the systems perspective, also a small 
range of decisions have been explored and for each only a 
small number of cognitive techniques have been used. For 
example, while [Almagor et al 04] focuses on low-level 
compiler optimization sequences (e.g., iteration peeling and 
algebraic reassociation), [Stephenson et al 05] addresses 
higher-level optimization decisions (e.g., loop unrolling). 
Exploring the spectrum of techniques from the cognitive side 
as they are applied to the spectrum of decisions in the system 
side is a crucial area of future research. 

Pursuing these research areas would bring us closer to a 
new generation of systems for what we call strategic 
optimization.  Strategic decision-making approaches would 
produce global optimizations for an entire application.  In 
contrast, we think of the approaches pursued to date as tactical 
decision-making approaches, where the decisions are isolated 
and often taken when little leeway is possible. In tactical 
optimization, we are left making small decisions about loop 
unrolling factors that lead to significant but very local 
performance gains.  In strategic optimization, we envision that 
upstream decisions of which component implementation to 
select would be taken in light of the available execution 
architecture and taking into account the overall application 
optimization choices.  We believe that strategic optimization, 
which optimizes application components in their execution 
context, would result in unprecedented gains in programmer 
productivity while achieving a high level of performance. 

Combining human expertise and automation is also a 
crucial area for future research.  [Cavazos and Moss 04] prefer 
to use machine learning algorithms that produce rules that are 
expressive, compact, and more human readable than other 
learning approaches such as neural networks.   Looking at the 
automatically learned rules, human experts could suggest new 
features to the learning algorithm or add more examples not 
covered under the current training set.  [Cooper et al 05] 
discuss how compiler settings can be selected by the 
programmer in collaboration with the system.  [Stephenson 
06] explores collaborative compilation where a community of 
programmers can contribute training data for learning 
algorithms in a compiler, envisioning optimizing compilers 
that are dynamically customized to a community of users and 
their particular type of applications.  There is a wealth of 
research on cognitive techniques for human-machine 
collaboration for complex problem solving for many other 
domains that could be relevant for this area of research.  For 
example, planning and constraint checking techniques have 
been demonstrated to assist users in workflow creation [Kim 
et al 04].  One could imagine programming environments for 
edge computing where intelligent assistance is used to extract 
from the programmer crucial application features relevant to 
performance, combined with automation of exploration and 
learning of optimization strategies at the compiler level.  
Programmers will remain at the application level, while the 
system will take care of execution details and of learning 

strategies to customize its behavior to the current architecture. 
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